日本における石炭採掘技術の現状
～釧路コールマインの現状と新たな展開～

平成26年2月25日

釧路コールマイン株式会社
松本 裕之
講演内容

1. 北海道と釧路の石炭

2. 釧路コールマインの現状
 ■ 石炭の生産と保安
 ■ 海外技術研修
 ■ 新規事業

3. 新たな展開
北海道の炭田・含炭地分布図
北海道付近の構造発達史
「日本の地形2 北海道」から

図1.3.3 北海道付近の構造発達史 [Kimura, 1994 を改変] a. 6500万年前，b. 2500万年前，c. 現在。
北海道における埋蔵炭量一覧表
（単位: 千トン）

<table>
<thead>
<tr>
<th>炭田名</th>
<th>昭和30年4月1日現在</th>
<th>昭和30年度〜昭和63年度間</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>理論埋蔵炭量（A）</td>
<td>理論可採埋蔵炭量（B）</td>
<td>採掘量（C）</td>
</tr>
<tr>
<td>石狩</td>
<td>6,487,194</td>
<td>6,390,042</td>
<td>389,033</td>
</tr>
<tr>
<td>釧路</td>
<td>2,027,829</td>
<td>1,967,533</td>
<td>86,570</td>
</tr>
<tr>
<td>留萌</td>
<td>596,810</td>
<td>594,564</td>
<td>19,120</td>
</tr>
<tr>
<td>天北</td>
<td>1,009,137</td>
<td>1,004,296</td>
<td>7,657</td>
</tr>
<tr>
<td>その他</td>
<td>111,242</td>
<td>110,789</td>
<td>1,828</td>
</tr>
<tr>
<td>合計</td>
<td>10,232,212</td>
<td>10,067,224</td>
<td>504,209</td>
</tr>
</tbody>
</table>
北海道における炭田別・炭質別埋蔵炭量
（単位：千トン）

<table>
<thead>
<tr>
<th>炭田名</th>
<th>炭質別</th>
<th>理論埋蔵量</th>
<th>理論可採埋蔵炭量</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1 石狩</td>
<td></td>
<td>175,639</td>
<td>174,282</td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>3,239,407</td>
<td>3,205,828</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>2,261,664</td>
<td>2,219,921</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>638,594</td>
<td>622,947</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>171,890</td>
<td>167,064</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td>6,487,194</td>
<td>6,390,042</td>
</tr>
<tr>
<td>C 釧路</td>
<td></td>
<td>137,361</td>
<td>136,308</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>839,082</td>
<td>789,034</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1,051,386</td>
<td>1,042,191</td>
</tr>
<tr>
<td>計</td>
<td></td>
<td>2,027,829</td>
<td>1,967,533</td>
</tr>
<tr>
<td>B2・C・D・E計留萌</td>
<td>596,810</td>
<td>594,564</td>
<td></td>
</tr>
<tr>
<td>F1・F2計天北</td>
<td>1,009,137</td>
<td>1,004,296</td>
<td></td>
</tr>
<tr>
<td>B1～F1計その他</td>
<td>111,242</td>
<td>110,789</td>
<td></td>
</tr>
<tr>
<td>B1～F2計北海道</td>
<td>10,232,212</td>
<td>10,067,224</td>
<td></td>
</tr>
<tr>
<td>A1～F2計全国</td>
<td>21,183,801</td>
<td>20,245,786</td>
<td></td>
</tr>
</tbody>
</table>

■ H20年度NPO法人地下資源イノベーションネットワークの調査（北海道）：天北・褐炭10億トン、釧路沖28億トン等追加、計154億トン
<table>
<thead>
<tr>
<th>年次</th>
<th>炭鉱数</th>
<th>生産量（単位：千トン）</th>
<th>常用従業者</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>全国</td>
<td>北海道</td>
<td>釧路</td>
</tr>
<tr>
<td>明治22年</td>
<td>(2)</td>
<td>2,389</td>
<td>4</td>
</tr>
<tr>
<td>大正元年</td>
<td>(9)</td>
<td>19,640</td>
<td>1,885</td>
</tr>
<tr>
<td>大正3年</td>
<td>(12)</td>
<td>22,293</td>
<td>2,587</td>
</tr>
<tr>
<td>昭和元年</td>
<td>(28)</td>
<td>(5)</td>
<td>31,427</td>
</tr>
<tr>
<td>昭和15年</td>
<td>(38)</td>
<td>(7)</td>
<td>56,313</td>
</tr>
<tr>
<td>昭和16年度</td>
<td>623</td>
<td>98</td>
<td>(6)</td>
</tr>
<tr>
<td>昭和20年度</td>
<td>392</td>
<td>47</td>
<td>(3)</td>
</tr>
<tr>
<td>昭和23年度</td>
<td>615</td>
<td>103</td>
<td>(5)</td>
</tr>
<tr>
<td>昭和32年度</td>
<td>864</td>
<td>155</td>
<td>27</td>
</tr>
<tr>
<td>昭和33年度</td>
<td>824</td>
<td>158</td>
<td>27</td>
</tr>
<tr>
<td>昭和36年度</td>
<td>662</td>
<td>152</td>
<td>21</td>
</tr>
<tr>
<td>昭和40年度</td>
<td>287</td>
<td>108</td>
<td>14</td>
</tr>
<tr>
<td>昭和41年度</td>
<td>239</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>昭和42年度</td>
<td>205</td>
<td>81</td>
<td>9</td>
</tr>
<tr>
<td>昭和49年度</td>
<td>39</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>昭和55年度</td>
<td>29</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>平成元年度</td>
<td>27</td>
<td>24</td>
<td>1</td>
</tr>
<tr>
<td>平成8年度</td>
<td>16</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

* 炭鉱数の（ ）は、大手炭鉱のみ、中小は不明
* 明治22年〜平成8年度の累計生産量：全国 2,881,443千トン、北海道 900,347千トン
北海道の炭鉱のはじまり

■ 最古の記録 天明元年（1781）「松前誌」、「タキイシ」
「此物東部クスリより出づ。黒ぶしてなめらかなり。もゆること薪のごとし。大和本草に所載石炭の類なり。」

■ 天明期「蝦夷草紙」
「石炭クスリ場所のうち、ツシヤハ村にあり」
釧路は北海道唯一の石炭のある場所

■ 赤川紀行
「寛政11年（1799）オタノシキ川（釧路）より・・・クスリ川迄は皆原なり。此附近石炭あり、又桂恋の附近なるシヨンテキ海岸には礫の中にも石炭夥しく、総べてトカチ嶺よりクスリ嶺までの内山谷海浜とも石炭なり。今度シラヌカにて石炭を掘りしに、坑内凡そ300間（1間：約1.8m）に至れども石炭毫も尽きることなしと云う」
北海道石炭鉱業の始まり
釧路炭田と太平洋炭鉱の歴史

<table>
<thead>
<tr>
<th>年代</th>
<th>事実</th>
<th>記述</th>
</tr>
</thead>
</table>
| 1856年 | 安政3年 | 前年の箱館開港に伴い、白糠石炭岬、釧路オソツナイ（岩見ヶ浜）で、外国船の燃料として石炭の採掘が始まり、7年間実施。
| 1871年 | 明治4年 | 工部省は、オソツナイの石炭坑を官営事業として再開し、採炭は佐賀－伊万里藩からの移民が実施したが、翌年廃止。
| 1874年 | 明治7年 | ライマンが釧路炭田を調査した。春鳥のヤマはすでに露頭炭より掘り出していた。
| 1886年 | 明治19年 | 川湯の硫黄採掘の燃料とするため、山田朔郎が採掘を出願した。
| 1887年 | 明治20年 | 安田善次郎は、春鳥湖の東岸にある春鳥炭山に坑夫を入れ、石炭採掘を始めた。
| 1900年 | 明治33年 | 春鳥炭山は、安田財閥下の安田炭鉱として採掘を続ける（年間2万トン）。
| 1914年 | 大正3年 | 安田炭鉱は、石炭販売の不振等により休山した。
| 1917年 | 大正6年 | 木村久太郎が安田から春鳥炭山を買収し、このヤマを木村組釧路炭鉱として再開させた。
| 1920年 | 大正9年 | 三井鉱山別保炭鉱と木村組釧路炭鉱が合併し、太平洋炭礦株式会社が生まれた。
| 1923年 | 大正12年 | 桂恋炭鉱を買収。
| 1944年 | 昭和19年 | 第2次世界大戦により、太平洋、雄別、庶路の3山は保坑、九州の三井炭鉱へ移動。
| 1945年 | 昭和20年 | 終戦により、九州への転換者の引き揚げが始まり、再開。
| 1949年 | 昭和21年 | 海底部内坑道の掘進に着手した。 |
春鳥炭鉱 → 木村組釧路炭礦

春鳥沼石炭積み出し場

木村久太郎

大正9年 太平洋炭礦(株)

大正12(1923)
春採第一斜坑開坑。
大正14(1925年)年、
別保坑で斜坑開坑。
大正時代
昭和初期
昭和30〜 機械導入期

昭和33年 ホーベル採炭導入
昭和32年 コンティニアスマイナー1CM導入
昭和33年 シャトルカー10SC導入
昭和26年 マシントラック導入
昭和53年 現鉱業所周辺
釧路コールマインの沿革

・ 太平洋炭鉱
 ◆ 大正9年（1920）設立
 ◆ 昭和21年（1946）海底下に着手
 ◆ 平成14年（2002）閉山 約1,500名
 ◆ 太平洋興発株式会社の100％子会社

・ 釧路コールマイン
 ◆ 平成13年12月（2001）会社設立
 ◆ 平成14年1月（2002）稼働開始 509名
 ◆ 53社が出資した市民炭鉱
 ◆ 電力会社の引き取り協力 5年間の期限付き
釧路コールマインの事業内容

・ 石炭の生産・販売
 ◆ H14～18 70万トン
 ◆ H19～ 50万トン

・ 研修事業
 ◆ H14～H18 炭鉱技術海外移転事業
 ◆ H19～H23 産炭国石炭産業高度化事業
 ◆ H24～ 産炭国石炭採掘・保安技術高度化事業

・ 新規事業分野の開拓
 ◆ 石炭関連事業 KCMエンジニアリング株式会社
 ◆ 環境関連事業 株式会社KCMコーポレーション
 釧路オートリサイクル株式会社
石炭 地質層序表

<table>
<thead>
<tr>
<th>地質時代</th>
<th>地層名</th>
<th>標厚（m）</th>
<th>火成活動、その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>現世</td>
<td>沖積層</td>
<td>7+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>段丘堆積物</td>
<td>4〜7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>屈斜路軽石流堆積物</td>
<td>20+</td>
<td></td>
</tr>
<tr>
<td>塩路累層</td>
<td>礫質相</td>
<td>70+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>砂質相</td>
<td></td>
<td></td>
</tr>
<tr>
<td>主部層</td>
<td>7〜19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下部層</td>
<td>0〜20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>塩路層群</td>
<td>20+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>釧路層群</td>
<td>40+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>達古武累層</td>
<td>7〜19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>下部層</td>
<td>0〜20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>東釧路累層</td>
<td>20+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>新生代</td>
<td>40+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>第四紀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>更新世</td>
<td>雄別累層</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>天寧累層</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>古第三紀</td>
<td>浦幌層群</td>
<td>15〜80</td>
<td></td>
</tr>
<tr>
<td>濱新世</td>
<td>春採累層</td>
<td>10〜40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>別保累層</td>
<td>10〜40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>沖積層</td>
<td>150+</td>
<td></td>
</tr>
<tr>
<td>中生代</td>
<td>500+</td>
<td></td>
<td>安山岩の貫入</td>
</tr>
<tr>
<td>白亜紀</td>
<td>上部層</td>
<td></td>
<td></td>
</tr>
<tr>
<td>中新世</td>
<td>下部層</td>
<td>20〜400</td>
<td></td>
</tr>
<tr>
<td>根室層群</td>
<td>仙鳳趾累層</td>
<td>120〜400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>門静累層</td>
<td>10〜320</td>
<td></td>
</tr>
<tr>
<td></td>
<td>太田村累層</td>
<td>350+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>阿歴内累層</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

昭和40年（1965年）5万分の1地質図幅説明書（尾幌）
〈石炭〉炭鉱の花形 採炭切羽（SD）
'石炭' 長壁式採炭技術
〈石炭〉炭鉱の花形 掘進
〈石炭〉沿層掘進システム

ベルトコンベア

コンティニアスマイナ

シャトルカー

舟橋
石炭を生産するために必要なもの
～坑内～
たとえば、

■ 電気設備 : 変電室や各種ケーブルで100V～3,000Vにして使用
■ 運搬設備 : ベルトコンベヤー、資材・人員運搬
■ 通気設備 : 作業員への空気供給と、ガスや粉塵を除去
■ 揚水設備 : 坑内からの湧水を取り除き、また機械へ供給
■ 圧縮空気設備 : 動力用エアーと、災害時の空気供給

など
坑内設備一運搬
石炭を生産するために必要なもの
～坑外～
たとえば、
■ 整備工場：機械・電気設備の整備
鋼枠、各種機器の製作
■ 変電所：北電6万Vを変圧し供給
■ 木材土場：各種坑木の製作
■ 選炭工場：原炭を選別し、精炭を生産
■ 沈殿地・捨て石集積場：廃水浄化・ずりの処理
など
坑外設備ー興津変電所
坑外設備一選炭工場
釧路埠頭（石炭積込設備）
保安を確保するために必要なもの

たとえば
■ 各種センサー・検知機：
 固定式・携帯式の各種センサー・検知機を配備
 （ガス・水・通気・温度・電気・機器運転等）
■ 集中監視制御設備：
 坑内外に配置したセンサーからの情報を、伝送
 システムにて、指令室でコンピュータ監視・制御
■ 救護隊：
 いざという時のために、定期的に訓練
など
坑外設備ー指令室①
坑外設備—通気分析

監視端末機

ガスサンプル分析機
ガスセンサー

メタンガス

COガス
救護隊訓練
計画立案し、検証する

たとえば、

■ 採掘計画:
坑内測量し、CADで図面化、また集中監視システムへ反映

■ 通気計画:
坑内で常時通気計測し、ガスのサンプルを分析、またボーリングの実施

■ 保安計画:
保安状況を常時監視し、データの採取・解析など
炭鉱の作業職人員

■ 採炭・掘進 約 1／3

■ 支える職種 約 2／3

坑内 仕繰り・機械・電気・通気
坑外 整備・選炭
全般 計画・測量・保安・指令室
救護隊
事務 総務・経理・労務 等
坑内炭鉱は総合技術力

● 炭鉱は、石炭・岩石・電気・水・空気・資材・人員等、大量なものを移動させるのが仕事

● 地圧・断層・石炭の酸化等と戦うため、坑道の維持、災害予防技術・技能が大事

● そのため、電気・機械・通気・整備・選炭・コンピューター・測量・仕繰り等、全ての技術を総動員し、保安・石炭生産を『支える』
〈研修〉研修事業の仕組み（受入）

経済産業省

補助金

JOGMEC

委託

釧路コールマイン

研修生派遣

中国

ベトナム

※JOGMEC：財団法人石油天然ガス・金属鉱物資源機構
経済産業省

補助金

JOGMEC

委託

釧路コールマイン

有識者

指導員派遣

指導員派遣

中国

ベトナム

※JOGMEC: 財団法人石油天然ガス・金属鉱物資源機構
＜研修＞受入研修の実績

◎炭鉱技術海外移転事業

<table>
<thead>
<tr>
<th>国名</th>
<th>H14</th>
<th>H15</th>
<th>H16</th>
<th>H17</th>
<th>H18</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベトナム</td>
<td>77</td>
<td>88</td>
<td>103</td>
<td>103</td>
<td>111</td>
<td>482</td>
</tr>
<tr>
<td>中国</td>
<td>69</td>
<td>95</td>
<td>105</td>
<td>103</td>
<td>109</td>
<td>481</td>
</tr>
<tr>
<td>合計</td>
<td>146</td>
<td>183</td>
<td>208</td>
<td>206</td>
<td>220</td>
<td>963</td>
</tr>
</tbody>
</table>

◎産炭国石炭産業高度化事業

<table>
<thead>
<tr>
<th>国名</th>
<th>H19</th>
<th>H20</th>
<th>H21</th>
<th>H22</th>
<th>H23</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベトナム</td>
<td>91</td>
<td>116</td>
<td>108</td>
<td>102</td>
<td>92</td>
<td>509</td>
</tr>
<tr>
<td>中国</td>
<td>93</td>
<td>90</td>
<td>83</td>
<td>79</td>
<td>69</td>
<td>414</td>
</tr>
<tr>
<td>合計</td>
<td>184</td>
<td>206</td>
<td>191</td>
<td>181</td>
<td>161</td>
<td>923</td>
</tr>
</tbody>
</table>

◎産炭国石炭採掘・保安技術高度化事業
H24：ベトナム 143人
研修派遣研修の実績

炭鉱技術海外移転事業

<table>
<thead>
<tr>
<th>国名</th>
<th>H14</th>
<th>H15</th>
<th>H16</th>
<th>H17</th>
<th>H18</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベトナム</td>
<td>35</td>
<td>40</td>
<td>50</td>
<td>85</td>
<td>115</td>
<td>325</td>
</tr>
<tr>
<td>中 国</td>
<td>10</td>
<td>17</td>
<td>24</td>
<td>19</td>
<td>19</td>
<td>89</td>
</tr>
<tr>
<td>インドネシア</td>
<td>0</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>合計</td>
<td>45</td>
<td>65</td>
<td>86</td>
<td>116</td>
<td>146</td>
<td>458</td>
</tr>
</tbody>
</table>

産炭国石炭産業高度化事業

<table>
<thead>
<tr>
<th>国名</th>
<th>H19</th>
<th>H20</th>
<th>H21</th>
<th>H22</th>
<th>H23</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>ベトナム</td>
<td>165</td>
<td>202</td>
<td>244</td>
<td>183</td>
<td>374</td>
<td>1,168</td>
</tr>
<tr>
<td>中 国</td>
<td>8</td>
<td>29</td>
<td>32</td>
<td>33</td>
<td>25</td>
<td>127</td>
</tr>
<tr>
<td>合計</td>
<td>173</td>
<td>231</td>
<td>276</td>
<td>216</td>
<td>399</td>
<td>1,295</td>
</tr>
</tbody>
</table>

産炭国石炭採掘・保安技術高度化事業

H24 : ベトナム 429人
研修事業に関係している省（中華人民共和国）

研修生を日本へ派遣している省

- 北京
- 内蒙古自治区
- 宁夏回族自治区
- 遼寧省
- 山西省
- 貴州省
- 陝西省
- 黒竜江省
- 吉林省
- 新疆ウイグル自治区
- 甘粛省
- 河南省
- 江蘇省
- 江西省
- 黑竜江省
- 山東省
＜研修＞研修事業に関係している炭鉱（ベトナム）

クアンニン省の炭鉱位置図
〈研修〉 受入研修
派遣研修
『研修』釧路市民との交流

釧路港舟漕ぎ大会
港祭り市民踊りパレード
くしろ市民北海盆踊り
山神篝火・三五四祭り
もちつき大会
パークゴルフ大会
中国の石炭生産量と死亡率

(ソース: IEA, 財務省貿易統計等)
ベトナムの石炭生産量と死亡率

生産量 (百万吨) で計測されたデータは以下の通りです。

- 1995年: 1.40
- 1996年: 1.34
- 1997年: 1.62
- 1998年: 1.56
- 1999年: 1.58
- 2000年: 3.43
- 2001年: 1.15
- 2002年: 2.16
- 2003年: 0.85
- 2004年: 0.95
- 2005年: 1.00
- 2006年: 1.19
- 2007年: 0.93
- 2008年: 0.92
- 2009年: 0.59

死亡率 (百万吨当たり) は以下の通りです。

- 1995年: 9.0
- 1996年: 13.0
- 1997年: 14.0
- 1998年: 0.74
- 1999年: 10.0
- 2000年: 11.0
- 2001年: 15.0
- 2002年: 17.0
- 2003年: 20.0
- 2004年: 27.0
- 2005年: 35.0
- 2006年: 42.0
- 2007年: 43.0
- 2008年: 43.0
- 2009年: 44.0

データソース: IEA, 財務省貿易統計等
釧路市一般廃棄物処理委託事業

収集運搬

釧路広域連合ゴミ焼却施設運転管理

バイオディーゼル燃料の製造

LED事業、他
〈新規事業〉KCMコーポレーション
〈新規事業〉釧路オートリサイクル（株）
＜新規事業＞KCMエンジニアリング(株)（防爆機器）
Mao Khe炭鉱集中監視室
2013エネルギー白書 世界の石炭可採埋蔵量

R/P 1995年:235年
2010年:128年

世界の石炭可採埋蔵量 8,609億トン

アメリカ 27.6%
ロシア 18.2%
中国 13.3%
インド 7.0%
他ヨーロッパ 17.1%
南アメリカ 3.5%
その他アジア大洋州 1.0%
その他中南米（メキシコを含む） 0.8%
他中南米 0.6%
カナダ 0.8%
コロンビア 0.8%

（注）BP統計では、World Energy Council, Survey of Energy Resources 2010（2008年末のデータ）を引用
（出所）BP, Statistical Review of World Energy 2012をもとに作成
2013エネルギー白書 世界の石炭生産・消費量

世界の石炭生産量の推移

世界の石炭消費量の推移

(注) 2011年データは見込み値。
(出所) OECD/IEA, Coal Information 2012をもとに作成
2013エネルギー白書 世界の石炭輸出・輸入量

（注）【第222-1-23】の輸入統計と本輸出統計では、出所データが異なるため合計値が一致しない。
（出所）OECD/IEA, Coal Information 2012をもとに作成
2013エネルギー白書 国内炭・輸入炭価格の推移

(注) 輸入炭は月次平均データ、国内原料炭は1983年度から1990年度までの年度平均データ、国内一般炭は1983年度から2001年度までの年度平均データを示す。
国内原料炭は1991年度で生産が終了したために、1992年度以降の価格は取り決められていない。
国内一般炭の価格は、2002年度以降の公表されていない。

(出所) 輸入炭については財務省「日本貿易統計」、国内炭については資源エネルギー庁「コール・ノート2003年版」
日本の炭鉱坑内事故死亡者数の推移

参照：財団法人石炭エネルギーセンター，社団法人資源・素材学会石炭技術部門委員会：炭鉱保安統計資料集，2002.3
石炭資源に関する論点（私見）

■ 石炭資源は豊富（128年）にあるが、中国・インド・開発途上国は、自国のエネルギーを価格の安い石炭に依存する傾向あり、国際マーケットにおける日本の発言力が低下する懸念がある。

■ 日本の有する保安・生産技術を産炭国に移転することは人道上からも、責務である。

■ 地域資源を地域に還元し、地域の発展に寄与することが求められる時代。
釧路資源エネルギー・エコパーク構想

凡例
実線 既存技術と内容
点線 導入技術と内容

国内向け研修
国内一般企業
国内研究機関
修学旅行研修
大学インターンシップ
観光見学コース

釧路地域の資源活用事業
農業・酪農・製糖工場
漁業・水産加工工場
林業・バイオマス
下水汚泥・製紙スラッジ

環境・リサイクル事業
廃プラスチック・廃タイヤ・廃材等による燃料の成型工場

海外向け研修
インド
ロシア
インドネシア
その他の国

一般産業の技術研修
国際交流
海外研修
研修施設

炭素・ガス・電気・熱の供給／CO2・フライアッシュ・産廃活用・リサイクル
坑内ガス抜きボーリング（CMM）
白亜紀層メタンガス調査